Wireless Power Transfer (WPT) using Strongly Coupled Magnetic Resonance (SCMR) At 5.8 GHz for Biosensors Applications: A Feasibility Study by Electromagnetic (EM) Simulations
ثبت نشده
چکیده
We report here a detailed 3-dimensional (3-D) electromagnetic (EM) simulation study on the feasibility of Wireless Power Transfer (WPT) using the strongly coupled magnetic resonance (SCMR) effect at 5.8 GHz for potential μm-scale biosensors applications. The tiny 110 μm x110 μm planar aluminum inductor coil is built on the silicon substrate as our miniaturized receiver coil, which has been designed and simulated by 3-D EM simulations and its EM data is consistent with the measured data from an advanced IBM/Global Foundries’ 0.18 μm complimentary metal-oxidesemiconductor (CMOS) silicon-on-insulator (SOI) process technology. By using small relay coils for an optimized four-coil WPT system to reach the SCMR condition, EM simulations show that one can increase the wireless power transfer between the transmitter coil to the miniature receiver coil by about 300% to 400% over the traditional 2-coil inductive resonant system at the 5.8 GHz ISM band, making SCMR quite attractive for implantable bioelectronics and biosensors applications, such as on cochlear implants, capsule endoscopy and pacemakers. Our study features the smallest receiver coil (about 330 times smaller in area) than the previously reported smallest receiver coil used in inductive coupling for wireless power transfer.
منابع مشابه
A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances
Strongly coupled magnetic resonance (SCMR), proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT) technologies, and di...
متن کاملCombined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer
This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR) and a strongly-coupled magnetic resonance (SCMR), for better wireless power transmission (WPT). This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and...
متن کاملMid-Range Wireless Power Transfer and Its Application to Body Sensor Networks
It has been reported that, through the evanescent near fields, the strongly coupled magnetic resonance is able to achieve an efficient mid-range Wireless Power Transfer (WPT) beyond the characteristic size of the resonator. Recent studies on of the relay effect of the WPT allow more distant and flexible energy transmission. These new developments hold a promise to construct a fully wireless Bod...
متن کاملEquivalent Circuit and Calculation of Its Parameters of Magnetic-Coupled-Resonant Wireless Power Transfer
Because of an improvement of wireless communication technologies, cables are taken away step by step from an electrical equipment. Now, a power cable is the last wire connected to the equipment. Therefore, wireless power transfer (WPT) technology is desired. Conventionally, microwave power transfer and magnetic induction have been used for this purpose. Microwave power transfer technology utili...
متن کاملMagnetically Coupled Resonance Wireless Power Transfer (MR-WPT) with Multiple Self-Resonators
Wireless power transfer (WPT) has been studied formore than one hundred years sinceNikola Tesla proposed his WPT concept. Asmore and more portable electronic devices and consumer electronics are developed and used, the need for WPT technology will continue to grow. Recently, WPT via strongly coupled magnetic resonances in the near field has been reported by Kurs et al. (2007). The basic princip...
متن کامل